Supplement #3: Gas Chromatography

FIGURE 13.1 A Illustration of column-liquid chromatography.

The system is shown at different times (not at regular intervals) after the sample enters the column. The column is packed with a solid adsorbent. The sample, composed of mixed components A and B, is carried through the column by the flowing liquid. As they pass the detector, their presence is recorded on the data system. Note that the concentrations of A and B as they exit the column are always lower than when injected.

Schematic of Gas Chromatograph (GC)

Schematic of High Performance (Pressure) Liquid Chromatography (HPLC)

Common Terms in Chromatography

Mobile Phase Stationary Phase Support HETP -medium carrying sample across

-site of separation-usually packed or coated on column

- the inert surface on which the stationary phase is bonded

-Height Equivalent of Theoretical Plate=the effective distance between distinct separation jumps

Normal phase

-LC short hand for case of non-polar mobile phase and polar stationary phase

Reversed phase

-LC shorthand for case of polar mobile phase and non-polar stationary phase (set up in current Alfred HPLC)

Resolution Capillary column

-A numeric estimate of the degree of peak separation.

-Also called open tubular column, a thin glass capillary with the stationary phase coated on the inside walls

Packed column

-traditional ~ 1/4 inch metal columns tightly packed with stationary phase on finely divided silaceous support.

Silanizing the support

hydrolyzed support surface

dimethylchlorosilane (DMCS)

+n HCI

hydrolyzed support surface

Tends to adsorb polar organic components like ROH and water, causing degradation of separation

Silanized support won't bleed or causing tailing

Examples of Liquid Phases Used to Coat the Support

Chemical Name commercial name Chemical Structure Uses

Polymethyl silicone

OV-1,SE-30

general purpose Non-polar samples (aromatics, aliphatics, PCBs, drugs, steroids

Poly(phenymethyl) siloxane (50:50 methyl:pheny)

OV-17

aromatic compounds glycols, steroids

Polyethylene glycol

Carbowax 20M

acids, ethers, natural oils

Polyethylene glycolterephthalic acid OV-351

alcohols, fatty acids

TCD (thermocouple detector)

Figure 26-7 Diagram of a two-filament thermal conductivity detector.

Voltage-based detector

Mass spectrum detector (GC-MS)

Examples Of Effect Of Stationary Phase On Separation Chem 6614 Oftentical instrumentation

Computing number of plates N and length of plates H to a Column of Length L

Synge/Martin theory connection to reality of GC performance

H=

L(cm)/N

For perfectly symmetric peaks

 $N=18.5(t_R/w_{0.1})^2=\#$ plates

Symmetric peak

For asymmetric peaks

N=
$$\frac{41.7(t_R/w_{0.1})^2}{[Z+1.25]}$$
=# plates

^{*}Z = W_R/W_L (ratio of right to left side of $W_{0.1}$ defined by peak) see also supplement 14

Asymmetric peak

Typical calculation for N and H

L=Column length = 6 feet ~ 183 cm t_r= 3.0 minutes = 180 sec w_{0.1} = 0.15 minutes= 9 seconds Z=1 (symmetric, `pretty' peak)

> N=18.5 $(t_R/w_{0.1})^2$ =# plates =18.5 $(180/6)^2$ = 16650

H=L(cm)/N

 $H= 183/16650 \sim 0.011 \text{ cm}$