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 Variational and Peturbation Approximation Methods: Overview of `Practical’ Quantum Methods (see also:  Chapter 7 pp 241-260 of text)


8.1. Variational Method  (pp 241-251 of text)

The basic variational principle is that any arbitrary function  that satisfies the conditions necessary for a wave function (continuity , differentiability, normalizability and obedience to boundary conditions of studied system) will yield a solution energy E such that:

1			E = <*|    > Eo			(see also: eq.7.3 and 7.4 p. 242)
                                                                   
If  = o, where o is the actual exact solution to the eigen value problem, then  and Eo is the actual energy. Otherwise, E > Eo. The implication of the above is that the closer computed E is to Eo, the better approximation  is to o. Thus, if we can adjust  to minimize E, then we have a way to approximate  using `conveniently’ selected (and simple)  . This provides a way to model complex quantum systems with `adjusted’ simple `trial’ wave functions  that reduce the difficulty of solving the exact Schrodinger equation. (`Proof’ of the variational principle is found by working problem 7-1 pg 261 of text.)

It is common to start with one of two kinds of functions:
 i)  trial  which are solutions to a previous and exactly determined Schrodinger eigen value equation e.g.  = H atom wave functions or harmonic oscillator wave functions, 
 ii)  that are mathematically convenient  like cos (kx) , e-ar  or  

Given one of these two choices, two alternative strategies can then be applied:

a) A `constant’ term in the trial   can be assigned as a variable (call it ) and E is minimized with respect to , e.g. 

2			 dE =   d  [ <*| /  ]	=0	(see example 7.1 p. 244-5)
                                     d           d

This is the most intuitive approach and can be expanded to several variables (,, ….) for minimization.

b) A set of n trial functions of fixed functionality (no adjustable variables (,, ….) are used to approximate  as below:
						n
	             c11 +c22 + c33 …cnn = ckk
						 k=1
By minimizing the corresponding approximate energy E below with respect to the mixing coefficients c1,c2…cn we eventually are afforded n solutions for E and, by substitution, the individual values for  c1,c2, c3…cn.

3a			E=	<ck*k*|ckk>   = <ck*k*|ckk>  
                                                <ck*k*|ckk>	    ckcm<k* |m>

The broad outlines of how this done is explained below.
If we substitute the symbol Hkm =<k* |m> and Skm = <k* |m> and E= E then 3a becomes 3b:

3b			E  ckcm Skm = ckcmHkm

The expression in 3b is then separately differentiated with respect to ck for k=1,2…n . A typical result for ck=1 is:
		E(2c1S11 + 2cmSm1) + dE( ckcm Skm)  = 2c1H11 + 2cm1H1m
				             dc1

Since we are minimizing E => dE/dc1 = 0  the above equation simplifies to:

		E(c1S11 + cmS1 m1)   = c1H11 + cm1H1m

Rearranging this and expanding the sum we get for k=1:

		c1(H11-ES11) + c2 (H12-ES12)  + c3(H13-ES13) + …..cn(H1n - ES1n) = 0

Similarly for k= 2,3….n
		
c1(H21-ES21) + c2 (H22-ES22)  + c3(H23-ES23) + …..cn(H2n – ES2n) = 0

c1(H31-ES31) + c2 (H32-ES22)  + c3(H33-ES33) + …..cn(H3n – ES3n) = 0
				…….			          
c1(Hn1-ESn1) + c2 (Hn2-ESn2)  + c3(Hn3-ESn3) + …..cn(Hnn – ESnn) = 0

This leads to the general `secular’ equation (determinant), 4: 

4	Det 	H11-ES11    H12-ES12 …..H1n -ES1n	=0
	H21-ES21     H22-ES22….H2n -ES2n
			…
	Hn1-ESn1      Hn2-En2Sn2....  Hnn-ESnn	

The above equation forms the basis of molecular orbital theory, where E is determined by computing the solution of the above once all the Hkm and Skm have been computed and plugged in (usually by computer since it is clearly a tedious business.) Most modern quantum calculations follow this approach. Text books mostly confine themselves to 2 variable (c1 and c2) cases. (See page 250-2 of text, for example. A limited two variable version of the above general solution is also part of problem 7-17 of text, page 263. )

Note that if  k are selected so that Skm = 0 if km, and all Skk = 1 (e.g. k is orthonormal.) Then 4  simplifies to 5:

5	Det 	H11-E         H12		 ….H1N		=0
	H21           H22-E            ….H2N
			…
	Hn1               Hn2            ….  HNN

This can be expanded as an nth order polynomial equation in E which can be solved numerically for the n possible E using Maple or other algebraic tricks.
 
A famous use of 5  is used to derive the orbitals of benzene, a process leading to the 4n+2 Hückel rule.


8.2. Perturbation Method  (pp 257-260 of text)

In this approach, a well-known system with exactly known wave functions is modified by assuming a small `perturbation’ in the original quantum Hamiltonian is added. For example, if the original energy for the harmonic oscillator is:

o o = ( -ħ 2    d2 o +½ kx2) o = Eoo
                2      dx2

then a slight `anharmonicity’ perturbation term like  , which accounts for minor deformations in the `spring’ as it stretches out, changes the eigen value problem to:

o + )(o + )= (Eo+E’) )(o + )

Using the proof described in problem 7-19, page 265-266 of text the expansion of the above results in the key recipe 6:

6			E’ = <o*|o>

This means if you can identify or define any perturbation  to a known system with known o, then to `first order’ the energy of the perturbed system is:

7			E  =Eo  + <o*|o>.

For example, if we include anharmonicity in the harmonic oscillator problem,  the `corrected’ Ecorr is:

Ecorr = h(n+ ½ ) + <o*|o>.

Given that o = (/)1/4     where =(k/ ħ 2 )1/2    
·                                                                                       
<o*|o>= (/)1/4     dx  + (/)1/4       dx

			  =   0					     +  

E corr(n=0) = ½ h  +  where =(k/ ħ 2 )1/2   and b is a measure of deformation.

It is this approach that ultimately leads to the fitting equation listed below that was used in the HCl IR experiment . The equation corrects for anharmonicity xe, centrifugal distortion De and rotational-vibrational interaction e. The observed r2 for the fitted data was better than 0.99999, a testament to the approach.

Perturbation corrected line position  for HCl IR P and R branch rotational lines
(cm-1) = o +(2Be -2e)m –em2 -  4Dem3
where o = e -2exe
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