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Schrodinger’s 5 Quantum Postulates with Play-by-Play Notes

Postulate 1: 
(x), the  source code for quantum systems (pg 116)

The state of a quantum mechanical system is completely specified (at any given time t) by the function
(x) where x is the position of the system (can be  also  in x,y,z).  All information about the particle is stored in (x) and can be retrieved using the appropriate quantum operators and given that the probability of the system being at any particular x  dx is the product: *(x)(x)dx.  ((x) is often called the stationary state wave function, or, the time-independent wave function).

Note: It is common to include as an addendum to the above postulate that a specific requirement on (x) is that it be `normalized’ so that:  
					<*|> = 1

which is mathematically compact way of saying that if we integrate over all possible x, the system exists with a 100 % probability. 

Postulate 2: 
Connecting classical quantities with quantum operators  (pp 118-119, 130 )

Every classically observed physical quantity can be re-expressed in the quantum domain with an appropriate linear (Hermitian) operator ( specified by the recipes on page 119, table 4.1 attached here).

Note 1:  a linear operator Â has the `distributive’ property, e.g.  (see also: pg 79)
		Â*(c1 f(x)  + c2g(x)) = c1 Âf(x)  + c2Âg(x)

		d/dx is an example of a linear operator: d/dx(c1f(x) + c2(g(x))= c1df(x)/dx  + c2dg(x)/dx
		  is an example of a non-linear operator: (f(x) +g(x)   f(x)   + g(x)
		
Linearity also means that if two different functions f(x) and g(x) result in the same `eigenvalue’  for a physical quantity like energy, then their linear combination is also a solution (eigen function) of Â.
e.g. c1 f(x)  + c2g(x) is also a solution to Â(x) =   (see page 121)

Note 2: a Hermitian, linear operator Â has the additional property that:
		n (x)*Âm (x) dx = m  (x)[(|Â|n (x)]*dx			(see also, eq. 4.31 page 129)

or equivalently         :<n *|Â|m> = <m |(Â|n *> 

where n and m  are any two solutions (or the same solution : n= m)  to the eigenvalue problem.
This will guarantee that the eigen values of Â will be real numbered, and, that different wave function solutions to Â, 1 and 2 corresponding to different allowed eigen values have the (lovely) property that: 
		
			<1|2> = 0 

which means 1 and 2 are `orthonormal’- a term meant to imply that the two wave functions are like Cartesian (perpendicular) coordinate axes helping to define the `space’ of possible states for the system. 
Postulate 3: 
Finding physical quantities in the quantum world- Schrodinger’s eigenvalue formulation (p 122) 

In any measurement of an observable associated with an operator Â, the only values that can be observed for this operator are the `eigenvalues’, a, which are real numbers that satisfy the eigenvalue equation:

			Ân  = ann

Note:  As a practical matter, the chief ` Â ‘ we focus on is Hop ,  the quantum Hamiltonian, whose analysis in the above leads to the wave function  (x) defined in postulate 1.   The inclusion of a subscript n reflects our experience in chapter 3 that quantum mechanical solutions involve integers n= 1,2,3….which arise from the accompanying boundary conditions applied to the eigenvalue problem. As already noted from Postulate 2, the separate n are orthonormal. Postulate 2 and 3 let us deduce that Â must be Hermitian and  <m*| n> = 0 if n m. 

Postulate 4:
How we compute average behavior of quantities in the quantum world (page 122)

If n(x) is an allowed and normalized state function for a quantum system, then the average of the observable A associated with any allowed quantum operator Â (table 4.1, pg 119), is given by:

					<n*|Â| > = <A>

Note: this is the quantum equivalent of what was described in Homework 3 and in Math supplement B of the text, e.g. that an average of any quantity y= y P(y) dx = <y>.

Postulate 5:
 Recipe for finding the time variation of  quantum systems  (pg. 125)

Let (x,t) be the composite wave function of x and t (which may contain (x)) .  Let Hop  be a (possibly) time-containing Hamiltonian energy operator. To find the more general, non-stationary (x,t) we must solve the `time-dependent’ Schrodinger equation:

	Hop (x,t)  = i ħ (x,t)
			t

Note: Often Hop  will not contain any time variable and we can write, as we did with the classical wave equation, (x,t)= (x)*T(t) and separate variables so that (after some algebra…)

H(x)  = E(x)		stationary state Schrodinger equation

dT(t)  = -i ET(t)
dt	 ħ

The latter differential equation is easily solved so that T(t)= Ce-iEt/ħ, which has the exact form to that determined for the classical wave equation’s T(t). If this is the case, then the probability:
 (x,t)*(x,t) dx  =(T(t) (x)) *(T(t) (x))dx= (T(t)*T(t)) X(x)*X(x)dx 
        = C2e+ iEt/ħe- iEt/ħX(x)*X(x)dx
						       =C2*1* X(x)*X(x)dx 

Which means that if t is not part of Hop , then the probability density is also time-independent.
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TABLE 4.1
Classical-mechanical observables and their corresponding quantum-mechanical operators.
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