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The 2-D particle in-a-box applied to a real molecule

A good example of the use of the particle-in-the-box analysis we have just gone through is explored in problem 3.27, page 99 of your text. Paraphrased, the problem statement is as below:

Assume that the simple porphryin is a 2D square with side length L and 18 electrons1 in the conjugated system around the edge. Compute:  

A)the allowed energy levels
B)enumerate degeneracies for several choices of nx and ny
C) compute the expected lowest absorption energy in cm-1 predicted given that L=1000 pm
L

To intuitively grasp the physical character of the[image: ]

problem, it is important to see that the outsideL

ring of conjugated electrons obeys the famous
4n+2  Huckel rule for aromaticity. In this case,
n=4.1 Moreover, the porphyrin ring is rigid so that
all three conditions for aromaticity are present
Thus, the electrons in the outside ring circulate freely
around the path sketched in Figure 1 just as they do
 in benzene’s pi system, acting as if the potential
in the ring, V=0. 
Figure 1: porphyrin ring

Next, to simplify the problem we model the ring
as if it were a box of length L on a side, as sketched
in Figure 2, where L is the length of one side of the ring.						 
 By additionally assuming the box sits on a Cartesian x-y	
plane we  can assign coordinates to the box corners		(0,L)		        (L,L)	
as shown.

Crucial to understanding how to approach the problem now				     y	
is to grasp that the pi electrons are not moving in the classical
fashion around the `basepaths’ of the square. Instead, as with
1 D particle on a wire, the wave function  for the any electron				      x	      must obey the boundary conditions set on both the x and					
y coordinates, assuming   the electron’s wave function	 (0,0)			(L,0)Figure 2: 2D Cartesian Box Model for porphyrin

now has an independent x and y component to , e.g,	
    1     (x,y) = X(x)Y(y) 

with the following
2D boundary conditions: 
(0,y) =  (L,y) =0   for all y= 0L
 (x,0) =  (x,L) = 0  for all x= 0L







1It is argued below the lone pairs and double bonds to N also form part of resonance so that a total of 26, not 18 electrons participate =>n=6, contrary to the implications of the problem, but consistent with the answer provided for in the text.





The basic Hamiltonian operator version of the Schrodinger equation for an electron in this system has the form : 

-ħ2    2     + 2 (x,y)  + V(x,y) (x,y)  = E(x,y)  		2

2m   x2     y2

As with the 1D box, V(x,y) will be assumed = 0 along the box edge and infinite everywhere else so 2 simplifies to 3

ħ2    2     + 2   (x,y)  + E(x,y) =0  		3

            2m   x2     y2

Then, by substituting 1 for (x,y)  we obtain 4 :

ħ2    2     + 2   X(x)Y(y)  + EX(x)Y(y) =0  		4

            2m   x2     y2

Since X(x) is independent of y and Y(y) is independent of x, 4 can be re-written as below

	ħ2Y(y) d2X(x)    + ħ2 X(x) d2Y(y)    + EX(x)Y(y) =0
            2m	dx2	     2m	        dy2	

Dividing through by X(x)Y(y) we get:

ħ2        d2X(x)    + ħ2          d2Y(y)    + E =0
            2mX(x) dx2	     2mY(y)   dy2	

But since x and y are independent, it requires that:

ħ2        d2X(x)    =- Ex   5a

            2mX(x) dx2	                    	

ħ2          d2Y(y)   = -Ey5b

2mY(y)   dy2

Where Ex+Ey = E.

We have already solved 5a and 5b  since they are the 1D particle-on-a wire Schrodinger equations. Thus we can write:
7a   Ex = (nx  ħ)2       nx =1,2,3…
	     2mL2
7b   Ey  = (ny ħ)2       ny =1,2,3…
	       2mL2

6a	X(x) = C1sin(nxx/L)  

6b 	Y(y) = C2sin(nyy/L)  


8     E   = Ex + Ey = ( ħ/L)2   { nx2 +ny2}    
			2m
Equation 8 above answers question A of problem 3.27

To answer question B, we feed in values for (nx, ny) starting at (1,1) and note degeneracies. We do this up to and beyond the state wherein all 26 electrons have an (nx,ny) address. 

Answer to Part B
(nx,ny)			E (in (  ħ)2 /2mL2 units 	total electron count1		
(1,1)			   2					2			
(1,2)	(2,1)		   5					6			Occupied states

( 2,2)			   8 					8		
(3,1)   (1,3)		   10					12 
(2,3)   (3,2)   		   13					16
(1,4)  (4,1)		   17					183
  (3,3)			   18					22
 (4,2)  (2,4)		   20   	HOMO2			26		Lowest absorption  energy, E= E(LUMO)-E(HOMO)

	  26 electron limit (Huckel n=6)

( 3,4)  (4,3)		   25	LUMO2							
(1,5) (5,1)		   26	unoccupied states					
 (2,5) (5,2)		   29	 							
(4,4)			   32								
(3,5)  (5,3)		   35  								
1We assume spin pairs in each level…e.g. a third quantum number, s=  ½ is assigned to each (nx, ny) so that each `orbital (nx,ny) can contain a pair of electrons like they do in molecular orbits
2HOMO = highest occupied molecular orbital; LUMO = lowest, unoccupied molecular orbital
3an electron each can be in (1,4) and (4,1) to satisfy `Hund’s rule’.

To answer C, we compute E(LUMO) = E(nx=3,ny=4) and E(HOMO) = E(nx=4 ny=2) 
with L= 1000 pm = 10-9m .	Electron mass m=9.1*10-31 kg, ħ= 1.054*10-34J*s and
 h= 6.626*10-34 J*s, c= 3*108 m/s.

E = E(3,4) – E(4,2) = [25-20]* (  ħ)2 /2mL2 =5(  ħ)2 /2mL2 
E =5*(*1.054*10-34J)2/2[9.1*10-31*(10-9)2]  in J =3.019*10-19 J
3.019*10-19 J/hc  = 1/(m) = 1.515*106 m-1 =1.515*104cm-1
 The text says the transition is between (4,2) and (4,3)=>5(  ħ)2 /2mL2  units  and quotes15,200 as the computed energy vs. 17,000 cm-1 observed

This neccessarily requires that we include both the lone pairs and the extra two pi systems to yield a total of 18+ 8=26 electrons => 4n+2 has n= 6, which is sensible since the resonance below occurs involving all 26 electrons. (The text seems to imply only 18 electrons are involved, which leads to an incorrect transition energy from (1,4)(3,3) which occurs near 3030 cm-1)
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