Organic Chemi	stry 1
Exam 3, Ch 7-8	, Fall 2017
Name	

/50	/50	/100
Fong	Rugg	Total

1) Write the likely major mechanism (E1, E2, S_N1 , S_N2 or none) in the box below the arrow and write down the likely final product(s) that could occur for the proposed reactions below: (3 pts each)

Likely product(s) (if any)

c)
$$CI$$
 $+$ CI $EtOH$ $EtOH$ $EtOH$

weak nucleoph.la

2) Order the reactions below in order from fastest to slowest for S_N2 substitution. (3 pts)

E > D>B > c > A				
reaction	Substrate	solvent	<u>nucleophile</u>	
A	2-fluoro-2-methylpropane	Methanol	Cl ⁻	
В	1-iodopropane	ethanol	methoxide (CH₃O⁻)	
С	2-iodo-2-methylpropane	Methanol	Cl-	
D	bromoethane	CH₃CN	 "	
Е	bromomethane	DMF	1	

3) Order the reactions below in order from fastest to slowest for S_N1 substitution. (3 pts)

<u>A</u> > <	•	
Reaction	Substrate	solvent
A	t-butyl-iodide	methanol
В	ethyl iodide	DMF
C	t-butyl-fluoride	methanol
D	2-iodopropane	ethanol

4) Given that the reaction below runs $S_N {\bf 1}$, write out the mechanism (curved arrow notation) and indicated major and minor products. (4 pts)

Both solvolysis on Hs subst.

accepted

/12

5) Draw the activated complex expected when CH₃I undergoes an S_N2 reaction with CH₃S⁻. (2 pts)

6) Which will run faster? (circle your choice) (4 pts)

a) CH₃I with OH- in methanol CH₃I with OH⁻ in CH₃CN

b) t-butyl chloride with I in methanol t-butyl chloride with I in acetone

c) t-butyl fluoride with H₂O t-butyl fluoride with I

d) 1-chloropropane with I⁻ in acetone 1-chloro-2,2-dimethylpropane with I⁻ in acetone

7) Circle the feature that doesn't apply in each line below for S_N2. (3 pts)

a)	inversion occurs	favors 1° and 0° α carbons	features intermediate	likes aprotic polar solvents
b)	best leaving group's source acid has pKa<0	works best with low steric hindrance	has 5-coordinated transition state	rate independent of nucleophile
E	I'>Br'>Cl'>F' as Nuc in aprotic polar solvent	favors 1° and 2° β carbons	CH₃CN favored over CH₃OH as solvent	strong base is often a good Nuc for S _N 2

8) Circle the feature below that doesn't apply in each line below for S_N1. (3 pts)

a)	racemization occurs	runs best with aprotic, polar solvents	rate independent of Nuc-	has intermediate
b)	solvolysis happens if no Nuc-	rate limit is formation of carbocation	favors $3^{\circ} \alpha$ carbons	I ⁻ faster than F ⁻ as
c)	rearrangement possible	works best in polar, protic solvents	retention of configuration	best leaving group's source acid's pK _a <0

Organic Chemistry 1 Exam 3, Ch 7-8, Fall 2017 Laboratory Questions (4 pts)

- 9) Once upon a time, Joe Chemist was asked by his incessantly cackling and height-challenged professor to run several reactions. The first was a substitution to convert n-butanol to 1-bromobutane. Which of the possible, initial steps makes the most sense? (circle your answer)
 - a) mixing KOH and ether
 - DAdding NaBr to an 80% sulfuric acid solution
 - c) adding a small sliver of I_2 to the butanol
 - d) mixing NaBr with with acetone
- 10) After wiping drool from his professor off his lab coat, Joe got the reagents for the above reaction into a 50 mL round-bottom flask. His next step to make 1-bromobutane is:
 - a) solvent extracting the mixture after 20 minutes of standing
 - b) adding sodium carbonate to neutralize the solution
 - (c) refluxing the mixture vigorously for 40 minutes
 - d) chilling the flask and the adding KOH in ethanol
- 11) Just as Joe finishes his substitution, the obviously drugged-out gnome of an instructor begins ranting and giggling about carrying out an elimination on 1-bromocylohexane. The initial steps of this synthesis should be:
 - (a) refluxing in ethanol with KOH followed by distillation
 - b) slow distillation in the presence of concentrated sulfuric acid
 - c) vigorous refluxing followed by solvent extraction in water
 - d) adding a sliver of I_2 along with Mq to the 1-bromocyclohexane
- 12) The final product is a mixture of 1-bromocyclohexane (mp: -57 °C, bp: 166 °C) and cyclohex-1-ene (mp -104 °C, bp 83 °C). Which of the following is NOT a method to determine the purity for these compounds?
 - a) Refractive index
 - (b) Melting point

ct TLC

d) GC