HOMEWORK ASSIGNMENT #5 ORGANIC CHEMISTRY I (20 pts)

structure-property; free radical reactions of alkanes and ozone

(due Wed 3 October post mini-break)
your name 1 pt

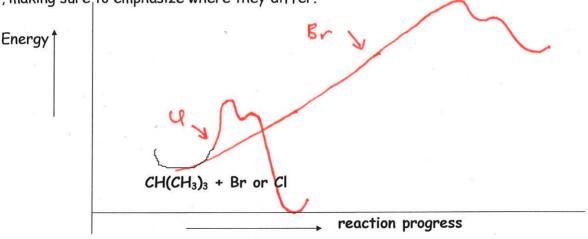
5.1 In the 'zone' (2 pts)

Your name:

The reactions of CFCs (chlorofluorocarbons) that occur in the upper stratosphere are below. Circle the two specific ones that are most directly responsible for interrupting the natural birth of ozone, O_3 .

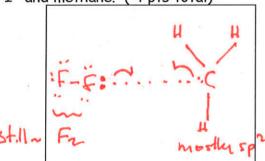
a)
$$CI + CI$$

b) $CF_3 + CF_3 \rightarrow C_2F_6$

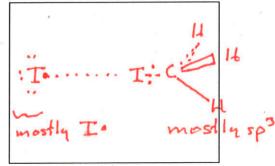

any uv light ≤ 350 nm

c) $CIO + O \rightarrow CI + O_2$

c) $CIO + O_3 \rightarrow CIO + O_3$


5.2 Drawn and quartered... 3 pts

sketch on the same plot below the reaction coordinate diagrams of Br and Cl with $CH(CH_3)_3$, making sure to emphasize where they differ.



5.3. Activated Thinking (4 pts)

sketch the activated complex you expect to form between F^* and methane vs that between I^* and methane. (4 pts total)

F* + CH₄ activated complex

I * + CH₄ activated complex

5.4. Circle the carbon at which the most rapid chlorination is expected in each of the two structures below (2 pts)

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_2
 CH_3

5.4) Productive thinking (4 pts)

Photochemical chlorination of 2,2,4-trimethylpentane yields 4 different monochlorides. Draw them below

5.6 All in the family chemistry (4 pts)

Among the isomeric alkanes with the empiric formula C_5H_{12} , sketch the skeletal structure of the particular alkane that on photochemical chlorination produces:

a) single monochloride

c) four isomeric monochlorides

b) three isomeric monochlorides

d) two isomeric dichlorides

