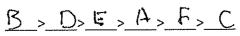
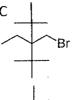

Alfred State Organic Chem 3514 S_N2 Mechanism Exercises

- Identify the α , β and γ sites (if any) on the molecules below. 20 D
 - Identify the 0°, 1° (primary), 2°(secondary) and 3° (tertiary carbons) (if any) on the 2. molecules above.
 - Alkyl halides undergo two basic kinds of reactions: substitutions and elim: nations 3.
 - Define what the acronym S_N2 stands for 4.
 - The SN2 mechanism involves (circle all that apply): 5.

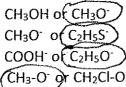


Order the 4 alkyl halides in problem 1 in order from fastest to slowest S_N2 rate 8.


9. Using the pKa below, order the leaving groups from best to worst.

H-NH₂ H-Cl H-F H-I H-Br Compound H-OC₂H₅ 16 36 -7 3 -11 рKа

10. Order the alkyl halides below from fastest to slowest S_N2 reaction rates.



D

- 11. Circle the true statements about SN2 below.
- (a) \$N2 reactions run best in polar, aprotic solvents because the solvent does not solvate the nucleophile.
- (b) A good nucleophile for S_N2 is a strong base.
- (c) A good nucleophile for S_N2 is very polarizable.
 - d) Steric effects are unimportant in S_N2 .
- (e) A good leaving group is one where the conjugate acid pKa of the group is negative (-).
 - f) $S_N 2$ rates follow the order $0^\circ < 1^\circ < 2^\circ < 3^\circ$ with respect to the α carbon in RX.
 - g) β carbon crowding is not as important as $\alpha\text{-carbon}$ crowding in lowering S_N2 rates
 - h) The ranking of I, Br, Cl and F as nucleophiles in an S_N2 follows the order: I>Br>Cl>F
 - 12. From the list below, pick the substrate, nucleophile and solvent that would run fastest via SN2

Substrate	nucleophile	solvent
2-chlorobutane	(F)	H ₂ O
1-chloro-2-methylpentane	CH₃CH₂OH	CH3OH_
2-chloro-3-methylpropane	t*	(CH₃CN)
1-chloropentane	NH ₃	NH ₃

13. Which is the better nucleophile?

14. Any day doing Organic chemistry is a ____